
Prefrontal Cortex and Putamen Grey Matter Alterations in Cannabis and Tobacco Users

Yusuf Daniju, Paul Faulkner, Kaz Brandt, and Paul Allen

paul.allen@roehampton.ac.uk

Cannabis – The Cultural Journey

Background: Cannabis Use

- Approximately 200 million regular cannabis users worldwide (UNODC, 2021) & recreational use is likely to increase as cannabis use is decriminalised in many regions of the world
- Animal studies investigating Δ^9 tetrahydrocannabinol (THC) demonstrate dosedependent neurotoxicity in cannabinoid receptor-rich regions of the brain (Chan et al. 1998; Heath et al. 1980; Lawston et al. 2000)
- Over recent decades there has been a trend for recreational users to use stronger and more potent strains of cannabis that have increased concentrations of THC to around 14% (Potter et al. 2018)

Background: Cannabis and brain volume

- Voxel based morphometry (VBM) studies in humans report lower grey matter volume (GMV) in regular cannabis users compared to non-cannabis using controls particularly in **prefrontal cortex (PFC)**, **hippocampus**, **and putamen** (Ashtari et al. 2011; Battistella et al. 2014; Demirakca et al. 2011; Filbey et al. 2015; Lorenzetti et al. 2015; Yücel et al. 2008)
- These cannabis-related GMV decreases may also be cognitively and clinically significant as regular cannabis use associated with cognitive impairments (Crean et al. 2011; Meier et al. 2012) and adverse mental health outcomes (Henquet et al. 2004; Moore et al. 2007)

Background: Cannabis and tobacco use

- A confounding factor is that the majority of previous VBM studies did not control for tobacco use across cannabis using and non-cannabis using groups (e.g., Cousijn et al. 2012; Yücel et al. 2008)
- Tobacco is often used with cannabis (Banbury et al. 2013; US Department of Health and Human Services and Substance Abuse and Mental Health Services Administration, 2011)
- Problematic because tobacco use is also associated with altered GMV in PFC and putamen regions (Brody et al. 2004; Faulkner et al. 2020; Franklin et al. 2014; Fritz et al. 2014; Gallinat et al. 2006)

Aims

- Compare GMV in regular cannabis users that also used tobacco (CT), noncannabis using tobacco cigarette smokers (T), and controls who do not use cannabis or tobacco (C)
- By recruiting a non-cannabis using tobacco-smoking group (T) we were able to examine whether similar volumetric patterns were observable in tobacco users only
- We recruited recreational cannabis users reporting a wide variety of cannabis use to obtain a more representative sample of recreational users than those examined in some previous studies (e.g. Filbey et al. 2015; Wetherill et al. 2015; Yücel et al. 2008)

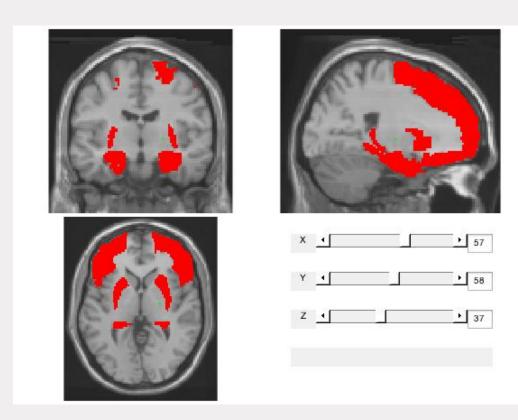
Predictions

 Relative to the C group, the CT and T groups would show lower GMV in prefrontal cortex and hippocampal regions, and greater putamen GMV.

• Given the link between cannabis use, adverse mental health, and intellectual function (Crean et al. 2011; Meier et al. 2012), we also explored the relationship between GMV, IQ, and levels of depression, anxiety and stress in CT and T groups

Methods: Participants

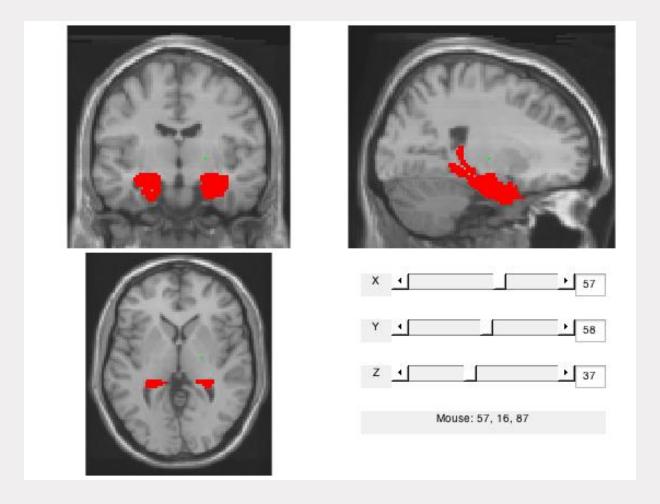
- Cannabis and Tobacco users (CT: n= 31)
- Tobacco users (T: n = 19)
- Non-smoking controls (C: n =35)
- Groups matched for sex, age, and IQ


• Using VBM, groups compared across bilateral hippocampal, putamen and PFC regions of interest (ROI)

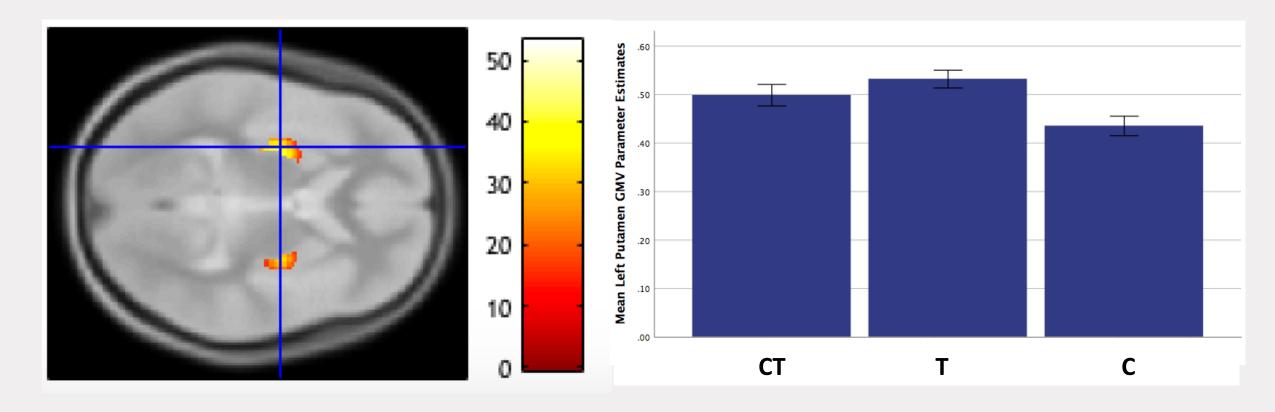
Methods: Voxel based morphometry (VBM)

Volumetric data preprocessed using the Computational Anatomy Toolbox, (CAT12; http://www.neuro.uni-jena.de/cat/)

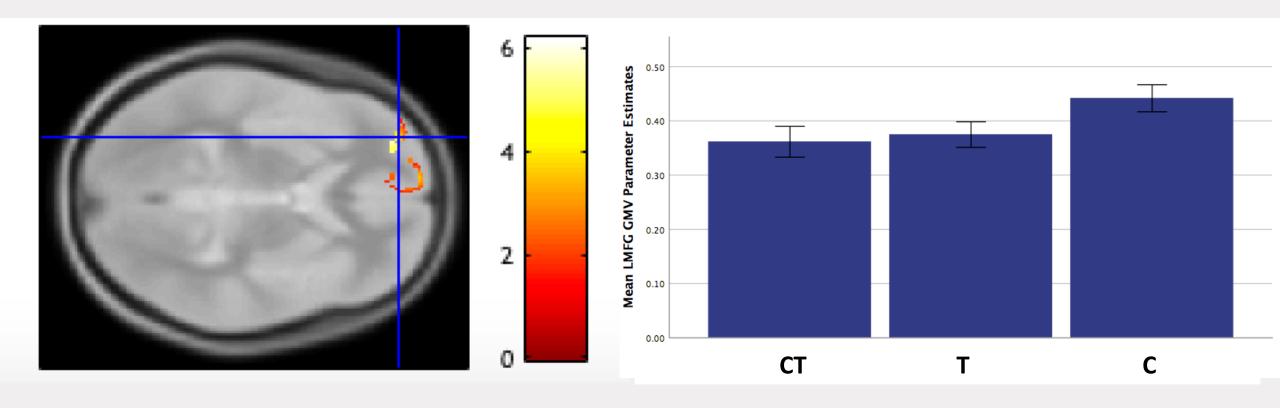
Age, sex, and total intracranial volume were included as regressors of no interest to control for effects on regional grey matter volume.


Statistical thresholds were applied at a p<0.05 after Family Wise Error (FWE) correction level for multiple comparisons within bilateral hippocampal, PFC and putamen ROI using WFU Pickatlas Toolbox (https://www.nitrc.org/projects/wfu_pickatlas)

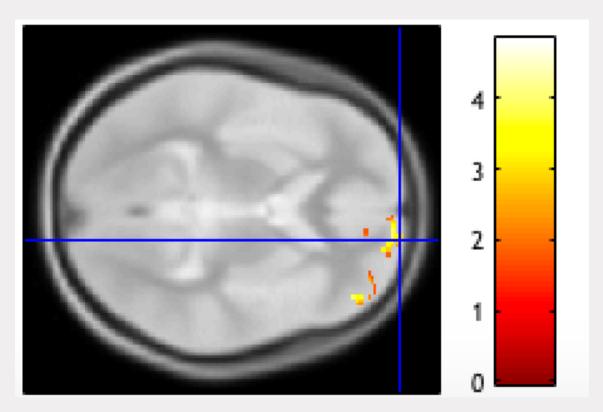
Methods: Participants' cannabis and tobacco use

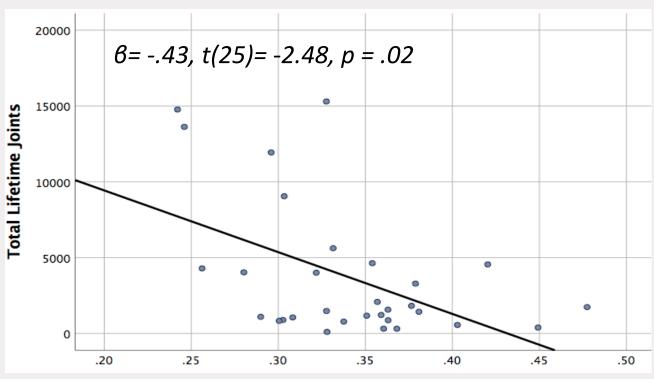

	Tobacco users (T)	Cannabis and tobacco users (CT)	Non-smoking Controls (C)	Analysis
	<i>N</i> = 19	(C1)	<i>N</i> = 35	
		N= 31		
Daily cigarettes	6.6 (5.3)	4.8 (5.5)	0	t(45)= 1.58,
smoked				p= 0.12 ^b
Years of tobacco	6.2 (4.2)	5.3 (4.3)	0	t (45) =1.95
use				$p = 0.35^{b}$
Pack Years	2.7 (3.65)	2.1 (4.07)	0	t (45)= 1.02
				$p = 0.31^{b}$
Total lifetime joints	25.1 (43.0)	3703 (4465)	0	t (45)=12.10
				<i>p</i> = 0.001
Years of cannabis use	0	8.2 (4.4)	0	n/a

Results: Hippocampal ROI



No supra threshold result


Results: Putamen ROI: Group Effects (x = -28, y = -9, z = 8, Z = 7.8, k = 927, p *FWE* (peak) < .01, and x = 30, y = -6, z = 3, Z = 6.54, k = 444, p *FWE* (peak) < .01)



Results: **PFC ROI** Group Effect left inferior frontal gyrus (x = -30, y = 51, z = 0, Z = 5.54, k = 77, p *FWE* (peak) = .01)

Results PFC ROI (CT vs. C): right frontal pole (x = 15, y= 63, z = -3, Z = 3.90, k = 13, p *FWE* (peak) = .02)

Mean GMV Parameter Estimates in in Right Frontal Pole

Results: IQ, Depression, Anxiety, Stress

DASS Subscale	CT Group		T Group		C Group		Analysis
	M	SD	M	<u>SD</u>	M	<u>SD</u>	
Depression	7.61	(5.95)	8.05	(8.84)	6.64	(8.50)	F (2, 82) = .29
							p = 0.75
Anxiety	6.10	(5.05)	6.26	(5.30)	6.17	(7.00)	F (2,82) = .005
							p =0.99
Stress	9.71	(7.24)	9.74	(7.87)	11.17	(9.60)	F (2,84) = .306
							<i>ρ</i> = 0.74

Significant positive correlation between GMV in the right frontal pole cluster and IQ scores in the CT group (r = .401, p = .02); not statistically significant after Bonferroni correction for multiple tests (p > .01). All other tests were non-significant.

Summary and Conclusions

- In a young adult population of regular cannabis and tobacco users exhibiting a range of recreational cannabis use patterns we observed lower than normal GMV within the PFC and increased GMV in the putamen but not in hippocampus.
- No significant associations between GMV alterations and clinical or IQ measures (after correction)
- GMV findings broadly in line with a previous study that reports volumetric changes in young people with limited exposure to cannabis (Orr et al. 2019)
- Similar volumetric alterations were also observed in non-cannabis using tobacco smokers thus
 further work is needed to better understand the differential effects of regular cannabis and
 tobacco use on brain volume.